ELC 441 DIGITAL ENGINEERING SYSTEMS (1.0 CU - 3 lecture hours, 1 design hour)

Course InformationProfessor: Orlando HernandezFall 2016: MW 5:30PM-6:50PM/7:00PM-7:25PM/AR148

Course Description:		A treatment of digital system engineering problems: power, noise, signaling, and timing.			
Instructor Information:		Office Location: AR 147A Phone: (609) 771-2470 E-Mail: <u>hernande@tcnj.edu</u> Web: <u>http://www.tcnj.edu/~hernande/</u>			
Office Hours:		Tuesdays11:00 AM - 12:20 PMThursdays2:00 PM - 3:20 PMBy appointment (send me email)And whenever my office door is open			
Textbook:		<i>Digital Systems Engineering</i> , by William J. Dally and John W. Poulton, CAMBRIDGE UNIVERSITY PRESS, 2008. ISBN 978-0521-06175-9			
Corequisite:		Digital Circuits and Microprocessors (ENG 312) and Electronics (ELC 251)			
Grading Policy	7:	Homework10%Homework will be announced for each chapter after the chapter has been coveredMidterm Exam30%Comprehensive Final Exam40%Design Projects20% (Projects 1 and 2: 5% each, Project 3: 10%)			
Tips for Success:		Read the book sections prior to their discussion in class. Do as much homework as possible. Attempt to do all the problems, even the ones that have not been assigned. Do not be shy about asking questions, either during class or outside of the class.			
College Level Policies:		Attendance Policy: http://www.tcnj.edu/~recreg/policies/attendance.html			
		Academic Integrity Policy: http://www.tcnj.edu/~academic/policy/integrity.html			
		Americans with Disabilities Act (ADA) Policy: http://www.tcnj.edu/~affirm/ada.html			
Tentative Ager	ıda:				
Week	Topics	Reading			
1 Monday 8/29		DUCTION TO DIGITAL SYSTEMS ENGINEERINGWhy Study Digital Systems Engineering?CHAPTER 1.1 – 1.3And Engineering View of a Digital SystemTechnology Trends and Digital Systems EngineeringCT ORIENTATION AND LECTURECHAPTER 1.1 – 1.3			

Tentative Agenda (continued):

Week	Topics	Reading			
2, 3 Monday 9/5	PACKAGING OF DIGITAL SYSTEMS A Typical Digital System	CHAPTER 2.1 – 2.8			
Monday 9/12	Digital Integrated Circuits – On-Chip Wiring				
	Integrated Circuits Packages				
	Printed Circuit Boards				
	Chassis and Cabinets Backplane and Motherboards				
	Wire and Cable				
	Connectors				
	PROJECT 1: Introduction to HyperLynx and the DSA8300 Digital Serial Analyzer				
4, 5	MODELING AND ANALYSIS OF WIRES				
Monday 9/19	Geometry and Electrical Properties	CHAPTER 3.1 – 3.7			
Monday 9/26	Electrical Models of Wires				
·	Simple Transmission Lines				
	Special Transmission Lines				
	Wire Cost Models				
	Measurement Techniques				
	Some Experimental Measurements				
	Signal Integrity and Time Domain Reflectometry (TDR) Basics PROJECT 1: Introduction to HyperLynx and the DSA8300 Digital Serial Analyzer				
		tai Seriai Anaryzei			
6,7	POWER DISTRIBUTION				
Monday 10/3	The Power Supply Network	CHAPTER 5.1 – 5.6			
Monday 10/10	Local Regulation				
	Logic Loads and On-Chip Power Supply Distribution				
	Power Supply Isolation				
	Bypass Capacitors				
	Example Power Distribution System				
	PROJECT 2: HyperLynx Simulations				
8,9	MIDTERM				
Monday 10/17	NOISE IN DIGITAL SYSTEMS				
Monday 10/24	Noise Sources in a Digital System Cross Talk	CHAPTER 6.1 – 6.6			
	Intersymbol Interference				
	Other Noise Sources				
	Managing Noise				
	PROJECT 2: HyperLynx Simulations				
10, 11	SIGNALING CONVENTIONS				
Monday 10/31	A Comparison of Two Transmission Systems	CHAPTER 7.1 – 7.4			
Monday 11/7	Considerations in Transmission System Design				
	Signaling Modes for Transmission Lines				
	Signaling Over Lumped Transmission Media				
	PROJECT 3: HyperLynx Simulations and TDR Measurements				
12 Monday 11/14	ADVANCED SIGNALING TECHNIQUES				
	Signaling Over RC Interconnect	CHAPTER 8.1 – 8.5			
	Driving Lossy LC Lines				
	Simultaneous Bidirectional Signaling				
	AC and N of M Balanced Signaling				
	Examples				
	PROJECT 3: HyperLynx Simulations and TDR Measurements				

Tentative Agenda (continued):

Week	Topics	Reading
13, 14	TIMING CONVENTIONS	
Monday 11/21	A Comparison of Two Timing Conventions	CHAPTER 9.1 – 9.3
Monday 11/28	Considerations in Timing Design	
	Timing Fundamentals Open-Loop Synchronous Timing Closed-Loop Timing	CHAPTER 9.5 – 9.7
	Clock Distribution	
	PROJECT 3: HyperLynx Simulations and TDR Measurements	
15 Monday 12/5	 SYNCHRONIZATION A Comparison of Three Synchronization Strategies Synchronization Fundamentals Synchronizer Design PROJECT 3: HyperLynx Simulations and TDR Measurements 	CHAPTER 10.1 – 10.3
16 Monday 12/12	COMPREHENSIVE FINAL EXAM	

Educational Objectives

(What TCNJ ECE engineers should be able to accomplish during the first few years after graduation)

The Department of Electrical and Computer Engineering at the College of New Jersey seeks to prepare its graduates:

- To contribute to the economic development of New Jersey and the nation through the ethical practice of engineering;
- To become successful in their chosen career path, whether it is in the practice of engineering, in advanced studies in engineering or science, or in other complementary disciplines;
- To assume leadership roles in industry or public service through engineering ability; and
- To maintain career skills through life-long learning.

Electrical and Computer Engineering Student Outcomes

(What TCNJ Electrical and Computer Engineering students are expected to know and be able to do at graduation. What knowledge, abilities, tools and skills the programs give the graduates to enable them to accomplish the Educational Objectives)

The Student Outcomes listed below are expected of all graduates of the Electrical or Computer Engineering Program.

ECE graduates will have:

- a. an ability to apply knowledge of mathematics, science and engineering;
 Students use mathematical and physics concepts as tools to analyze issues of signaling, power, and noise in high speed digital systems. The use these tools in homework problems, projects, and exams.
 b. an ability to design and conduct experiments, as well as to analyze and interpret data;
- an ability to design and conduct experiments, as wen as to analyze and interpret data.
 an ability to design a system, component, or process to meet desired needs;
- Students perform projects that involve design.
- d. an ability to function in multidisciplinary teams;
- e. an ability to identify, formulate and solve engineering problems; Students perform projects that involve the solution of engineering problems.
- f. an understanding of professional and ethical responsibility;
- g. an ability to communicate effectively; Students write three Project Reports.
- h. the broad education necessary to understand the impact of engineering solutions in a global and societal context;
- i. a recognition of the need for and an ability to engage in life-long learning;
- j. a knowledge of contemporary issues;
- k. an ability to use the techniques, skills and modern engineering tools necessary for engineering practice; Students use state of the art Time Domain Reflectometry (TDR) equipment and software to perform measurements and design involving TDR techniques.

Course Objectives:*

- Objective 1 To understand the design issues in high performance digital systems. [a, c, e, m]
- Objective 2 To model of the underlying physical and electrical mechanism of power distribution, information signaling, and system timing in high speed digital systems. [a, c, e, g, k]

Objective 3 To use these model to find engineering design solutions to noise, signaling, timing and power distributions problems of high performance digital systems. [a, c, e, g, k]

Topics Covered: 1. High-speed engineering models for wires

- 2. Power distribution in digital systems
- 3. Noise Management
- 4. Signaling methods for high performance systems
- 5. Timing and synchronization

Evaluation:

- A. Comprehensive FinalB. Midterm Exam
- C. Homework
- D. Project Report

Performance Criteria:**

Objective 1

- a. The student will be able to explain and deal with the issues of noise, signaling, timing, and power distribution in high performance digital systems. [A, B, C, D]
- b. The student will be able to correlate the effect to these issues on system performance. [A, B, C, D]

Objective 2

- a. The student will be able to model wires as either lumped elements or transmission lines depending upon their function, length and operating frequency for a particular application. [A, B, C, D]
- b. The student will be able to model power distribution systems with either a DC or an AC supply current for high-speed systems. [A, B, C, D]
- c. The student will be able to identify, model, and control the different noise sources, including skew and jitter, that impact the signaling and timing performance of digital systems. [A, B, C, D]

Objective 3

- a. The student will be able to determine the appropriate wire model, both on-chip and off-chip, appropriate for a particular high-speed digital system design. [A, B, C, D]
- b. The student will be able to minimize power distribution problems in the design of high performance digital systems. [A, B, C, D]
- c. The student will be able to manage the different noise sources, including skew and jitter, to meet high performance system requirements. [A, B, C, D]

^{*} Small letters in brackets refer to the Program Outcomes

^{**} Capital letters in brackets refer to the evaluation methods used to assess student performance